The RNA helicase DDX6 regulates cell-fate specification in neural stem cells via miRNAs
نویسندگان
چکیده
In neural stem cells (NSCs), the balance between stem cell maintenance and neuronal differentiation depends on cell-fate determinants such as TRIM32. Previously, we have shown that TRIM32 associates with the RNA-induced silencing complex and increases the activity of microRNAs such as Let-7a. However, the exact mechanism of microRNA regulation by TRIM32 during neuronal differentiation has yet to be elucidated. Here, we used a mass spectrometry approach to identify novel protein-protein interaction partners of TRIM32 during neuronal differentiation. We found that TRIM32 associates with proteins involved in neurogenesis and RNA-related processes, such as the RNA helicase DDX6, which has been implicated in microRNA regulation. We demonstrate, that DDX6 colocalizes with TRIM32 in NSCs and neurons and that it increases the activity of Let-7a. Furthermore, we provide evidence that DDX6 is necessary and sufficient for neuronal differentiation and that it functions in cooperation with TRIM32.
منابع مشابه
HIV-1 Gag co-opts a cellular complex containing DDX6, a helicase that facilitates capsid assembly
To produce progeny virus, human immunodeficiency virus type I (HIV-1) Gag assembles into capsids that package the viral genome and bud from the infected cell. During assembly of immature capsids, Gag traffics through a pathway of assembly intermediates (AIs) that contain the cellular adenosine triphosphatase ABCE1 (ATP-binding cassette protein E1). In this paper, we showed by coimmunoprecipitat...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملMicroRNA-346 regulates neural stem cell proliferation and differentiation by targeting KLF4.
MicroRNAs have been shown to play an important role in stem cell fate determination and self-renewal. However, the role of miRNAs in neural stem cells (NSCs) remains poorly understood. In this study, we showed that miR-346, a less characterized microRNA, promoted NSCs proliferation, differentiation and apoptosis by targeting KLF4, a core transcriptional factor in stem cell fate determination. O...
متن کاملMesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells
Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 43 شماره
صفحات -
تاریخ انتشار 2015